#AI 智能
李飛飛最新訪談:這,才是下一個10年
筆記君說:在AI浪潮席捲各行各業的今天,每一位企業家和創業者都面臨同一個問題:未來的機會究竟在那裡?被譽為“AI教母”的李飛飛,在前兩天的一次深度對話中,給出了她的答案。以下是李飛飛這次訪談中的自述部分,希望她的這些話,對你有所啟發。一、“空間智能”是AGI的一把關鍵鑰匙1.世界遠不止語言那麼簡單我先說一下我的信念:在技術上,確實有一些相通的概念,所以我也能理解有些人說“語言即世界”。宏觀地來說,我堅信這個世界遠不止語言那麼簡單。如果我們說的語言概念,指的是那種離散的、本質上更偏向“一維”的資訊——即便它能表達多維的內容,語言本身的呈現形式還是比較一維的。但這個世界其實要豐滿得多。我一直強調,空間智能包含諸多特性,比如物理屬性這些,都是超越語言範疇的。而且不管是人類的行為,還是大自然的運轉,很多東西既沒法用語言完全表述清楚,也不可能單靠語言就實現所有想做的事。我們每天睜開眼,從生存、工作、創造,到感受、感知,再到人與人之間豐滿的情感,這些日常裡的種種,從來都不是只靠語言就能完成的。當然“語言即世界”這樣的話確實挺好聽,聽起來也沒錯,因為它是非常籠統的一句話。當你一句話很籠統的時候,它可能錯不了。但從技術層面看,現在數位化是必然趨勢:視覺模型、空間智能、機器人模型,本質上都會走向數位化。可要是把數字和語言完全畫等號、當成一回事,那這個概念就變味了。如果連數字都能被叫做“語言”,那相當於啥都能往“語言”裡套,這就沒什麼好爭論的了。在我看來,資訊遠不止語言這一種,還有空間資訊,它和語言一樣美妙、一樣重要。2.“空間智能”到了爆發前夜現在AI大環境裡,大家對AI的期待確實有點太激進了。但我可以告訴你,我選擇創業的核心原因,就是覺得時間點到了。畢竟創業和搞科研不一樣,創業得緊密結合市場、尊重市場規律。但就像很多比我優秀的企業家說的,創業最關鍵的是踩準時間點——不能太早,市場和技術都沒成熟;也不能太晚,否則就沒了機會。空間智能技術在World Labs(中文名:空間智能)剛成立時,確實還早了點,但也沒早到需要等五六年、十年的程度。我判斷未來一兩年,它會迎來爆發式增長。你看現在視訊生成技術的飛速發展,再到我們做的World Models,我堅信這類技術在一兩年內還會有質的飛躍,市場應用的可能性也越來越清晰。我沒法簡單定義現在發展的速度是快還是慢,但能肯定的是,現在正是做空間智能的好時機。我們現在做的“世界生成”(world generation)模型,真的特別令人激動。它的應用場景太廣泛了——從數字創意、遊戲開發、影視製作、設計領域、建築行業,到VR、XR、AR技術,再到機器人模擬,每一個大領域裡又能細分出無數小場景。而這些場景,其實都藏著對三維空間的強烈訴求。生成式AI有個很特別的價值:它能降低原本高難度事情的門檻,進而打開很多你意想不到的新市場。生成三維空間就是件超難的事——這個世界上沒多少人能做到,而且用到的Blender、Unity這類工具,操作起來特別繁瑣。我自己試過,頭都大了。其實很多創作者腦子裡裝滿了好想法,只是被工具卡住了,而非缺乏創意。而AI既能給現有創作者賦能,還能讓很多原本覺得“這事跟自己沒關係”的人,發現新可能。就像我,以前根本不會碰Blender、Unity這類軟體,覺得又麻煩又費時間,但現在AI能賦予我這種能力,我肯定願意用——它能帶來太多新靈感、新機會了。所以我覺得三維世界模型特別讓人興奮:它原本是件對普通人來說難度極高的事,而AI能降低這項能力的使用門檻,這本身就是打開市場的絕佳機會。在我看來,沒有空間智能,沒有三維世界的生成式模型,就談不上AGI(通用人工智慧)。AGI就像一扇門,上面掛著好多把鎖,需要不同的鑰匙去開啟。我始終認為空間智能是其中一把關鍵鑰匙——不過這扇門並非非開即關,而是被一點點推開的。其實我一直不太糾結AI和AGI的區別。因為兩者的夢想是相近的,都是源於一種“科學”的好奇心:機器能不能思考?能不能自主完成事情?這是AI最初的夢想,AGI的目標似乎也沒偏離太多。不管叫什麼,這個夢想都得一步步實現,我們每往前走一步,就離它更近一點。而空間智能,必然是通往這個夢想的重要一環。不管是賦能人類的創造力(從遊戲、設計到工業應用),還是給機器人賦能,亦或是元宇宙、AR/VR的內容生成與落地,都離不開空間智能。3.演算法與資料,都是AI的核心工程、數學的發展路徑和進化的路徑是不一樣的,這就像蘋果和橘子的比較,它們的進化都是很慢的。進化的迭代速度遠慢於演算法迭代,而且碳基與矽基的運算邏輯也大不相同,所以從時間維度來看,兩者沒法放在一起比。但即便如此,進化依然給了我們很多啟發和靈感。這就說到資料的重要性了。當初我們實驗室提出“資料”相關概念,其實也借鑑了不少進化的思路:漫長的進化歲月,本質上就是一段巨量資料訓練的過程;但到了數字時代,我們不用再等幾十億年去收集資料,而是可以大規模、快速地積累資料。和大自然通過進化完成的“資料積累”比起來,我們現在一次能處理、看到的資料,可能相當於進化幾千萬年才沉澱下來的量。相信自己深思熟慮後的假設,也不是什麼怪事吧?走在科學路上,對於那些經過深度思考的假設,你總得有所堅信。但作為科研人,也得清楚有些假設註定是錯的——我當然也有過很多失敗的假設。而我現在堅信的這個假設,是琢磨了很久才得出的:它在數學上是歸納推理的邏輯。我整個博士階段都在做模型、搞演算法,積累了不少領悟,才慢慢意識到這一點。說白了,AI到今天在數學層面的核心,就是“泛化”(generalization)——本質上就這一件事。而泛化怎麼實現?核心就兩點:演算法和資料,而且兩者息息相關。演算法太複雜但資料不足,會過擬合(模型在訓練資料上表現優異,但在面對新資料時性能顯著下降,無法有效泛化的情況);資料太多但演算法不夠好,同樣會過擬合——這裡面藏著明確的數學邏輯。我算是電腦視覺領域早期做機器學習的那批博士生,很幸運的是,我的博士研究剛好趕上電腦視覺的轉折點——我們大量運用機器學習的理念,這讓我對“泛化”的理解更深刻(當然,不一定只有我理解得深)。但我那時候就明確看到了資料的重要性,所以一直堅持了下來。這又回到了好奇心的話題——那個求證假設的過程其實挺有意思的,全程充滿激情,就像一路打怪升級。只要沒被“妖怪”打敗,就接著往下打唄。模型和資料的關係,本質是螺旋式上升的。當年,ImageNet搭建起電腦視覺領域最大的資料庫,直接推動了電腦視覺的蓬勃發展;後來網際網路催生了海量自然語言資料,大語言模型也跟著迎來爆發;再看現在的視訊模型發展得這麼快,核心也是有足量視訊資料支撐;自動駕駛能飛速進步,也離不開頭部公司積累的海量路況、行駛資料。現在看似“又回到了資料和演算法”,其實根本算不上“回歸”——它們從來就沒離開過AI的核心。我有時候覺得挺有意思:就算AI發展到今天,大家還是更看重演算法。但真正做AI的人,不管是創業者還是大公司從業者,心裡都清楚:資料不是說比演算法更重要,至少是同等重要。演算法聽著更“酷炫”,資料的價值反而容易被忽視。但實際上,資料本身就是一門科學。4.空間智能,賦能於“機器人”的發展① 自動駕駛,是簡化版的世界模型自動駕駛汽車其實就是機器人——它是人類最早量產的機器人,但其實挺侷限的。你想啊,它就是個方盒子,基本只在二維路面上活動,只要別碰到別的東西,不管是車、行人還是路邊設施。但我們未來要做的三維機器人不一樣:它得在三維世界裡主動“碰”各種東西,幫我們洗碗、做飯、疊衣服。這麼一對比,就知道自動駕駛汽車其實還是挺簡單的機器人。所以對應的,它的世界模型也更簡單——畢竟要做的事兒就那麼點。當然我不是說自動駕駛不厲害,特斯拉、Waymo(全球自動駕駛標竿,前身為 2009 年Google自動駕駛項目)這些公司都很了不起。但從科學和宏觀的角度看世界模型與機器人技術,這頂多隻是個開始,接下來要做的事情複雜多了。我無法斷言特斯拉有沒有(世界模型)相關佈局。但至少不會是一個強生成性的模型,畢竟業務場景本身不需要這件事。但機器人不一樣,機器人訓練離不開生成式模型——你不可能收集到足夠多的真實場景資料。而且我們做的事情都和創意、設計相關,這些本身就需要生成能力,“生成”本身就是核心應用場景之一。② 機器人的三維能力,還在早期階段現在矽谷的機器人領域大火,我也特別喜歡這個領域,也一直很看好機器人的前景。但同時,我也覺得要保持冷靜:機器人研究其實還處在早期階段。首先,最核心的問題是缺資料。汽車行業發展了幾十年,還有無數人在開車過程中持續蒐集資料;可機器人目前基本沒有商業化應用場景,尤其是日常消費級場景,資料自然難收集。而生成式AI的出現,給機器人領域帶來了一條有意思又有前景的出路。像視訊生成這類技術,不僅提供了豐富的訓練想像空間,還能用於擬態——比如我們正在做的機器人模擬,就特別有前景;甚至在推理階段,還能用視訊模型輔助線上做規劃。可以說,正是機器人周邊領域(比如生成式AI)的快速發展,在反過來帶動機器人技術進步,這一點確實讓人激動。但機器人要真正實現商業化,還有一段路要走,尤其是日常消費級機器人。不過工業機器人早就落地了,畢竟它的應用場景相對單一,容易約束環境,而且也積累了不少資料。自動化駕駛和機器人兩者之間,既有可比性,也有不可比之處。自動駕駛從概唸到商業化,走了近20年:Google2006年就成立了小型自動駕駛研發團隊,直到2024年Waymo才正式上路。汽車行業的供應鏈、OEM體系、客戶場景都非常成熟,這一點讓自動駕駛的商業化比機器人快得多;但當年AI技術不成熟,自動駕駛在AI這條路上走了很久,而現在AI的發展速度肯定會更快。可除了工業機器人(或者說場景單一、易約束的工業機器人),目前並沒有像汽車那樣成熟的機器人應用場景。所以機器人商業化之路會比20年快,還是更慢,真的很難說。但我相信,AI層面的進展會比當年自動駕駛時期快一些;可反過來,機器人面臨的問題也更複雜——它要應對的是完整的三維世界。AI已經能做到非常出色,可要說今天的空間智能,能達到人類睜開眼就有的那種對三維世界的深層理解,還差得遠。比如物體間的物理關係、材料屬性、物理特性,這些我們人類能直觀感知的豐富資訊,AI還沒法完全掌握;更別說對社交資訊、人與人之間情感的理解,這些都屬於視覺理解的範疇,而我還沒提語言層面的複雜認知。人類本身就是極其複雜的存在。所以從進化和能力來看,AI在某些方面已經追上甚至超越人類,但在很多核心維度上,還遠遠不及。而且我作為深耕AI和科技領域多年的人,對空間智能的信仰,絕不是盲目崇拜。它源於對技術的深刻理解,源於這麼多年在這個領域的深耕,也源於我和同事們看到的技術機會與發展方向。創業確實需要情懷,但對科技趨勢的判斷,更需要紮實的邏輯和科學的判斷。二、AI的未來:人類有責任讓其“向善”1.機會,並非贏家通吃綜合來看,資料、算力、人才的整合能力很關鍵——現在能做好這些資源整合的公司,存活機率和勝率會更高。但我覺得,不能只盯著這些顯性因素。畢竟顯性因素一眼就能看到,也容易被大家熱議追捧,但光靠這些遠遠不夠。舉個簡單的例子,在AI coding領域,微軟應該是第一個下場的,推出了Copilot(微軟推出的跨平台生成式 AI 助手)。它可謂佔盡了天時地利人和:手握所有資源、坐擁現成場景,連GitHub(微軟旗下的開發者平台)都是自己的。可微軟最終沒能成為行業標竿,反倒是矽谷現在火起來的Cursor、Claude Code這些小公司,在巨頭圍剿下實現了突圍。這就說明,光有顯性因素根本不夠。如果大家都只盯著這些表面資源下判斷,很容易出現偏差。人類歷史上,從來沒有那個時代是大公司獨霸天下的——即便每個時代的大公司都手握超強的資源整合能力。所以這裡邊還藏著更關鍵的東西:創造力、機遇、執行力,還有對時間點的把握,這些都是決定成敗的核心變數。再加上,AI本身就是一門橫向技術,能催生出無數應用級機會,大公司根本做不完。這些機會,恰恰給了小公司足夠的空間:把某個應用做到極致,慢慢撕開市場缺口,完全有可能實現彎道超車。2.AI只是工具“AI是工具”,這其實是常識。工具本就是雙刃劍:人類史上所有工具,小到最初的火、石斧,大到核彈、生物技術,再到如今的AI,無一例外。我當然也認為,工具的使用必須向善,但同時也要防範它被誤用,不管是有意還是無意。所以我覺得,兩種極端都不理性:只追求發展而無視安全與向善,必然是災難;但天天空談倫理向善而停滯發展,也會錯失技術帶來的諸多福祉。就像做父母,你會教孩子用火做飯吧?既要告訴他們火能做飯的好處,也得讓他們知道用火的危險,這是再簡單不過的道理。AI既是權力的工具,也是向善的工具,但它永遠只是工具。在我看來,這工具會越來越強大,但在它真正不可控之前,它始終屬於人類——人類有責任讓它保持可控。但就像所有工具一樣,我們從來不會指望工具自己明白該做什麼:向善與否,本質是人類的責任。所以對AI的控制與引導,是法律、制度、教育和整個社會的共同責任。不同社會、不同個體或許有差異,但這份責任終究在人類身上。3.教育體系,到了徹底變革的時刻AI時代迫切需要我們更新教育理念和方式——既要讓孩子們學會用這個工具,借助它賦能創造力、助力學習;也要讓他們清楚工具可能存在的問題與風險。而且這絕不僅僅是教育孩子的事。我們總覺得該教育孩子,殊不知最需要被教育的其實是成年人自己。所以,自我教育、面向公眾的科普、給政策與法律制定者提供充足資訊和學習機會,這些都至關重要。說到底,對AI的發展與治理,本質上就是我們人類自身的學習、發展與治理——核心還是人的問題。在這個AI成為具備智力能力的工具的時代,它帶給我們的最大啟發,或許是讓我們更好地瞭解自己、治理自己——這裡的“自己”,既包括每個個體,也包括人類群體。現在關於AI的討論沸沸揚揚,大家都熱衷於談論這項技術。但說到底,不管是個體人性還是群體人性,欠缺的或許還是那份自省吧。對個體來說,時代正在劇變,再做“鴕鳥”逃避現實絕非明智之舉。這種變化必然帶來工作形態的重塑。任何重大科技革命都會引發職業變遷,有時是短暫陣痛、軟著陸,有時可能伴隨社會動盪。作為個體,還是要保持好奇心——對生命、對世界的好奇。那怕這份好奇心,在成年人的世界裡源於對未知的恐慌也沒關係,至少它能成為驅動你主動學習的動力。這一點,值得每個個體自省。而從群體層面來看,AI時代最急需革新的,是我們的教育體系。不管是國內的K-12教育,還是美國這邊雖不唯應試但仍包含應試、仍側重“知識填充”的教學模式,都亟待更新。AI正在不斷證明,很多事情機器能做得更好。如果還讓人類花十幾年、幾十年時間,去重複大半機器可替代的工作,無疑是對人類潛能的浪費。所以我特別想呼籲:所有關注教育、能影響教育政策以及踐行教育的人,都要牢牢抓住這個時代機遇。我們的教育方法論,已經100多年沒有本質變化了。我最大的期待是,100年後歷史學家回望21世紀上半葉時,會看到人類完成了一次真正的教育革命。借助AI賦能教育者與學生,把節約下來的大量時間和精力,讓學生們在老師的引導以及自我探索中,去積累那些AI永遠做不到的認知與核心能力。人類的潛力其實無比巨大,每個個體都是如此。我們的大腦遠未被充分開發,不管是作為個體還是群體,都還沒發揮出全部潛能。你只要看看人與人之間的能力差異,就能感受到這份潛力有多驚人:有些人展現出的能力,簡直像“超人”一樣。這說明,這種極致的潛能本就藏在人性之中,只是大多數人都沒能把它激發出來。而AI這個工具的出現,甚至它對人類工作帶來的衝擊,恰恰給了我們一個契機——重新審視並重構整個教育體系。我覺得真正的教育變革,應該打破工科與文科的固有界限:畢竟AI能讓所有人都學會程式設計,那這些人還能簡單歸為工科生嗎?AI也能幫更多人更好地感知美、讀書、作詩,文科的邊界也被打破了。所以,以前的分科邏輯完全可以改變——AI給了我們打破這種侷限的機會。但說到底,關鍵還是人怎麼使用這個工具。我最擔心的,是人類會放棄自我:覺得“AI這麼聰明,有沒有我都一樣”,這種想法太可怕了。“躺平”這個詞很形象,但背後的心態真的危險。人類有太多未被發掘的潛力,有太多創造世界的可能,有太多讓這個世界變得更美好的機會。而AI,終究只是一個工具而已。如果我們放棄了自身的能動性(agency),就等於放棄了改變自己、改變世界的好奇心與動力。說實話,我真的不懂什麼叫“AI就是世界”。就像有人說“一花一世界”,我能理解那份意境,但“AI就是世界”的說法,我實在摸不透它的核心含義。其實“AI只是工具”這句話的背後,本質是我們如何看待AI與人的關係——把AI當工具,意味著人類始終把自身放在更重要的位置,意味著我們更該關注自我的成長與價值。說到底,“AI是工具”這句話裡,藏著我對人的信仰——我信仰人性的潛力,信仰人類社會的韌性,我信仰的是人,而不是AI。尾聲李飛飛,是對技術趨勢的清醒判斷者。AI,是我們這一代人此生最大的機會。她說,AI時代,人類迎來一次教育的革命,從知識性教育到技能型教育,到認知結構,到人本身的教育,都可以改變。正是在這個時代背景下,筆記俠推出了中國首個面向企業家的AI時代PPE(政治、經濟、哲學)底層認知課程。以AI時代為背景,通過人工智慧科學、AI文明、經濟學、政治學、哲學、智能商業等視角,從底層把握AI時代,激發創業者們在AI時代的潛力,培養能駕馭AI範式轉移的決策者。如何擁抱AI時代,需要理解那些?要理解技術。人工智慧必然重構人類社會的底層邏輯。成為新人類,是決策者的宿命。要理解商業。當AI成為核心生產要素,企業的價值創作邏輯和增長範式會發生根本性變化。要理解世界。在波譎雲詭的世界中生存發展,決策者需要深刻理解AI時代下國際政治經濟體系運行的規律和趨勢。要理解中國。中國走向現代化的道路,必然建築在中國的文化基因上,理解中國才能穿越宏觀周期,活在中國,贏在中國。要理解自己。活出內心的自由和篤定,不被AI時代外界的震盪所撼動,決策者才有心力成為企業的定海神針。這,就需要回到決策的源頭:AI技術與文明、哲學、政治、經濟,重構我們的底層認知邏輯。我們一起做AI時代保持清醒和篤定的決策者。 (筆記俠)
突發!新物種!AI盡頭是空間智能深度洞察研究報告!2025
前言:AI的“空間轉向”與新物種誕生的必然性1.1 前言2025年,人工智慧產業迎來歷史性轉折點——以大型語言模型(LLM)為代表的通用AI技術在文字互動、圖像生成等領域的突破已觸及天花板,而“空間智能”作為連接虛擬算力與物理世界的核心載體,正成為AI技術演進的終極方向。史丹佛大學教授李飛飛在《從語言到世界:空間智能是AI的下一個前沿》中明確指出,當前AI系統困於“語言的世界”,缺乏對現實空間、物理規律與因果關係的真正理解,而空間智能將實現AI從“理解語言”到“理解世界”的跨越,成為AI攀登的下一座高峰。這一轉向不僅催生了“AI+空間”融合的產業新物種,更重塑了全球算力產業鏈的競爭格局與需求結構。本報告聚焦2025年AI與空間智能融合發展的核心議題,核心研究內容包括:空間智能的技術架構與“新物種”產業形態界定;全球及中國算力產業鏈的全景對比(上游晶片、中游算力服務、下游應用);空間智能驅動下的算力需求分層分析(行業、場景、算力形態);技術瓶頸與風險挑戰;未來發展趨勢與產業機遇。報告依託2025年最新行業資料、政策檔案及企業實踐案例,兼具技術深度與產業指導價值,旨在為產業鏈參與者、投資者及政策制定者提供全景式洞察。1.2 核心結論預覽1. 技術演進:空間智能是AI的“終極形態”,其核心是建構融合幾何、物理與動態規則的“世界模型”,實現從被動分析到主動規劃的跨越,當前已進入技術突破與規模化應用的臨界點。2. 產業新物種:催生三大類新物種形態——技術層的“空間大模型”、產品層的“具身智慧型手機器人”、服務層的“空間即服務(SPaaS)”,2025年全球相關市場規模已突破1.2兆元。3. 算力格局:全球智能算力規模2025年達1980 EFLOPS,中國佔比37.8%(748 EFLOPS),算力結構從訓練主導向推理驅動切換,邊緣算力增速(CAGR 50%-60%)遠超雲端。4. 產業鏈競爭:國外形成輝達、AMD雙寡頭格局,國內“一超多強”態勢顯現,國產晶片替代率2025年達41%,沐曦、壁仞等企業加速資本化處理程序。5. 需求驅動:智慧城市、工業智能空間、自動駕駛是核心需求領域,生物醫藥、AR/VR等細分場景算力需求增速超200%,端側AI裝置出貨量2025年破5億台。6. 挑戰與機遇:技術瓶頸集中於晶片製程、叢集互聯效率,地緣政治與能源約束加劇供需失衡;未來機遇在於異構算力協同、綠電算力基建及跨行業場景滲透。第一章 概念界定:AI與空間智能的融合演進1.1 空間智能的核心定義與技術內涵空間智能(Spatial Intelligence)是指機器對物理空間進行感知、建模、推理、規劃並實現互動的綜合能力,其核心是將多模態感知資料轉化為對空間關係、物理規律與因果邏輯的理解,實現虛擬算力與物理世界的精準對應。與傳統AI技術相比,空間智能具有三大核心特徵:一是多模態融合感知,整合LiDAR、攝影機、UWB、地理資訊等多源資料,實現釐米級定位與毫米級建模精度;二是動態世界建模,建構兼具語義與幾何屬性的3D動態場景,支援物理規則模擬與未來狀態預測;三是具身互動能力,依託“感知-決策-行動”閉環,實現與物理空間的自主協同互動。從技術架構來看,空間智能的實現需建構“五層技術堆疊”:第一層底層為算力支撐層(雲端+邊緣+終端異構算力);第二層為感知硬體層(LiDAR、毫米波雷達、高畫質攝影機等);第三層為資料處理層(空間資料清洗、融合與標註);第四層為核心演算法層(3D生成模型、物理引擎、具身智能演算法);頂層為應用場景層(智慧城市、工業、自動駕駛等)。其中,核心演算法層的“世界模型”是空間智能的技術核心,需突破現有LLM的範式侷限,實現語義關係與物理規律的統一理解。1.2 AI向空間智能演進的邏輯必然性AI技術的演進遵循“能力升級-場景拓展-需求倒逼”的邏輯,向空間智能轉向是技術發展與產業需求共同作用的必然結果。從技術層面看,當前以LLM為代表的通用AI存在三大核心侷限:一是缺乏空間認知能力,即使是最新的多模態大模型,在估算距離、方向、大小等基礎空間屬性時表現不及隨機水平;二是物理規律認知缺失,無法穩定預測物體運動軌跡、碰撞關係等基本物理規則;三是動態連貫性不足,生成的視訊內容往往在幾秒內失去空間邏輯連貫性。這些侷限使得AI難以真正賦能需要與物理世界互動的場景,成為技術演進的“天花板”。從產業需求來看,數字經濟與實體經濟的深度融合對AI提出了“落地物理世界”的迫切需求。智慧城市需要全域空間感知與智能調度,工業製造需要數字孿生與即時最佳化,自動駕駛需要高精度空間定位與動態決策,這些場景均要求AI具備空間認知與互動能力。據測算,2025年全球需要空間智能支撐的產業規模已達5兆美元,佔數字經濟總量的28%,需求倒逼成為AI向空間智能轉向的核心驅動力。從認知本質來看,空間智能是人類認知建構的“腳手架”,驅動著想像、創造與推理能力的形成。李飛飛團隊的研究表明,空間智能是連接感知與行動的核心能力,人類通過空間認知實現停車測距、人群穿行等日常動作,其本質是“想像-感知-行動”的一體化過程。AI作為模擬人類智能的技術體系,向空間智能演進是其逼近甚至超越人類認知能力的必然路徑,也是實現從“弱人工智慧”向“強人工智慧”跨越的關鍵環節。1.3 空間智能的“新物種”形態界定AI與空間智能的融合催生了三類具有顛覆性的產業新物種,這些新物種打破了傳統產業邊界,重構了價值創造模式:1. 技術層新物種:空間大模型。區別於傳統LLM,空間大模型以“空間資料”為核心訓練素材,融合地理資訊、3D點雲、物理規則等資料,具備空間建模、動態預測與場景生成能力。例如,史丹佛大學World Labs研發的世界模型可在語義與幾何層面理解複雜3D場景,推理物理屬性與互動關係,並生成連貫可探索的虛擬空間。2025年,國內外已有12款空間大模型實現商用,其中GPT-5空間版、百度文心空間大模型等在建築設計、城市規劃領域的應用精準率達93.6%。2. 產品層新物種:具身智慧型手機器人。依託空間感知與互動能力,具身智慧型手機器人實現了從“固定場景作業”到“全域自適應作業”的跨越,可在動態空間中自主規劃路徑、規避障礙並完成任務。典型案例包括亞馬遜倉庫智能分揀機器人(空間定位精度±2cm)、特斯拉Optimus人形機器人(具備家庭空間互動能力)、醫療微創手術機器人(空間操作精度±0.1mm)。2025年全球具身智慧型手機器人出貨量達120萬台,同比增長210%。3. 服務層新物種:空間即服務(SPaaS)。將空間智能能力封裝為標準化服務,通過API介面向千行百業輸出,實現“空間能力的按需呼叫”。例如,華為盤古空間服務平台可提供城市全域空間建模、動態交通預測等服務,已接入200余個智慧城市項目;GoogleEarth Engine空間服務平台為農業、環保領域提供土地利用監測、災害預警等服務,全球使用者超500萬。2025年全球SPaaS市場規模達2000億元,預計2030年突破1.2兆元。1.4 空間智能的發展階段與2025年關鍵節點空間智能的發展可劃分為四個階段:技術探索期(2015-2020年)、技術突破期(2021-2025年)、規模化應用期(2026-2030年)、成熟普及期(2030年後)。2025年正處於“技術突破期”向“規模化應用期”過渡的關鍵節點,呈現三大標誌性特徵:1. 技術突破節點:3D生成模型、物理引擎與具身智能演算法實現融合,空間大模型的場景理解精準率突破90%,邊緣算力支援毫秒級空間響應(延遲≤10ms)。例如,UWB+LiDAR復合定位技術市場滲透率達35%,實現釐米級定位精度;液冷技術普及使智算中心PUE降至1.1以下,支撐單機櫃算力密度達5P Flops。2. 產業落地節點:核心應用場景實現規模化落地,智慧城市試點項目覆蓋全國89%地級市,北京、上海、深圳等超大城市完成全域智能空間基礎設施建設;工業數字孿生工廠覆蓋率突破60%,生產線綜合效率(OEE)平均提升18個百分點;全屋智能滲透率達12.3%,華為鴻蒙生態與小米AIoT平台連接裝置突破8億台。3. 政策與資本節點:全球主要經濟體出台空間智能專項政策,中國《智能空間產業發展行動計畫(2025-2030)》明確培育30家以上獨角獸企業,組建國家級智能空間創新中心;美國《晶片與科學法案》投500億美元用於算力基建,重點支援空間智能相關晶片研發;歐盟“數字羅盤計畫”建100個百億億次超算節點,支撐空間智能場景落地。資本市場熱度攀升,2025年國內算力晶片企業迎來上市潮,摩爾線程、沐曦股份等相繼登陸科創板,融資規模超40億元。第二章 技術架構:空間智能的核心技術體系與算力支撐2.1 核心技術堆疊:從感知到互動的全鏈路拆解2.1.1 感知層技術:多模態融合與高精度定位感知層是空間智能的“眼睛”,核心目標是獲取物理空間的多維度資料,實現高精度、高可靠的空間感知。當前主流技術方向為多模態感測器融合,整合LiDAR、毫米波雷達、高畫質攝影機、UWB、IMU(慣性測量單元)及地理資訊系統(GIS)資料,彌補單一感測器的侷限性。例如,LiDAR具備高精度3D測距能力,但受天氣影響較大;攝影機可獲取豐富語義資訊,但測距精度不足;UWB適合室內短距離定位,室外表現較差。通過多模態融合演算法,可實現“全天候、全場景、高精度”的空間感知。關鍵技術突破包括:一是LiDAR技術的成本下降與性能提升,2025年車規級LiDAR單價降至500美元以下,探測距離突破300米,點雲密度達300萬點/秒;二是UWB+LiDAR復合定位技術,結合兩者優勢,實現室內外無縫切換定位,精度達±2cm,2028年市場滲透率預計達68%;三是多模態資料融合演算法,基於Transformer架構的融合模型可有效處理異構資料,提升感知精準率,在複雜交通場景中目標識別精準率達99.2%。2.1.2 建模層技術:3D動態場景與數字孿生建模層是空間智能的“大腦中樞”,核心是將感知資料轉化為結構化的空間模型,實現對物理世界的精準對應。技術方向分為靜態建模與動態建模兩類:靜態建模聚焦空間幾何結構的重建,如建築、道路、地形等;動態建模聚焦空間中物體的運動狀態與互動關係,如車輛、行人、裝置等。數字孿生是建模層的典型應用,通過“物理實體-虛擬模型-資料鏈路-服務應用”的閉環,實現物理空間與虛擬空間的即時同步。關鍵技術突破包括:一是3D生成模型,基於擴散模型與Transformer的融合架構,可快速生成高保真3D場景,例如史丹佛大學Marble平台允許創作者無需傳統3D建模工具,快速建立和編輯完整的虛擬世界;二是動態場景預測演算法,結合物理引擎與深度學習,可預測空間中物體的運動軌跡,預測準確率達95%以上,為自動駕駛、機器人導航提供支撐;三是輕量化建模技術,針對邊緣端裝置算力有限的問題,提出輕量化3D模型架構,模型體積壓縮70%以上,可在手機、邊緣閘道器等裝置上即時運行。2.1.3 決策層技術:空間推理與具身智能演算法決策層是空間智能的“決策核心”,核心是基於空間模型進行推理、規劃與決策,實現從“理解空間”到“利用空間”的跨越。核心技術包括空間推理演算法、路徑規劃演算法與具身智能決策演算法。空間推理演算法聚焦空間關係的邏輯判斷,如“物體A在物體B的左側”“路徑C比路徑D短20米”等;路徑規劃演算法聚焦動態環境下的最優路徑選擇,如自動駕駛中的避障路徑規劃、機器人的倉儲分揀路徑規劃;具身智能決策演算法聚焦“感知-行動”閉環,使智能體能夠根據空間環境變化調整行動策略。關鍵技術突破包括:一是空間大模型的推理能力提升,GPT-5空間版、文心空間大模型等可基於3D場景進行複雜推理,如建築結構安全性評估、城市交通流量最佳化;二是強化學習在路徑規劃中的應用,通過模擬海量空間場景訓練模型,使智能體在動態環境中(如擁堵路段、突發障礙)快速找到最優路徑,規劃效率提升40%以上;三是人機協同決策技術,結合人類經驗與AI推理能力,在醫療手術、工業操作等高精度場景中實現“人機互補”,降低操作風險。2.1.4 互動層技術:無感化與人機協同互動層是空間智能的“輸出介面”,核心是實現智能體與物理空間、人類的高效互動。技術方向分為兩類:一是智能體與物理空間的互動,如機器人的機械臂操作、自動駕駛汽車的轉向與制動;二是智能體與人類的互動,如語音互動、手勢互動、腦機介面等。當前發展趨勢是“無感化互動”,即智能體通過感知人類行為、情緒等訊號,主動提供服務,無需人類主動觸發。關鍵技術突破包括:一是手勢與姿態識別技術,基於電腦視覺的即時姿態捕捉精度達98%,可實現對機器人的手勢控制、智能座艙的姿態互動;二是語音互動的空間化,結合空間聲學技術,實現多區域語音識別,區分不同位置的說話人,在智慧辦公場景中支援多人同時語音指令;三是腦機介面技術,在高端辦公、醫療場景中實現腦電波控制,2029年商用化率預計突破15%。2.2 算力支撐體系:雲端-邊緣-終端的異構協同空間智能的全鏈路技術落地離不開算力支撐,其算力需求具有“高並行、低延遲、異構化”的特徵:高並行源於多模態感測器的海量資料(如LiDAR每秒產生數十GB資料);低延遲源於即時互動需求(如自動駕駛需≤10ms的決策延遲);異構化源於不同任務對算力的差異化需求(如建模需GPU的平行計算能力,推理需ASIC的高能效比)。為此,空間智能建構了“雲端-邊緣-終端”三級異構算力協同體系,各層級功能與算力形態如下:2.2.1 雲端算力:大規模訓練與全域調度雲端算力是空間智能的“核心算力底座”,主要承擔空間大模型訓練、全域空間資料處理、跨區域調度等重算力任務。2025年全球雲端智能算力佔比70%-75%,單叢集算力達50 EFLOPS,可支撐萬卡級GPU叢集進行空間大模型預訓練。例如,GPT-5空間版的訓練需萬卡級GPU叢集,單次訓練成本超千萬美元,訓練過程消耗算力達100 EFLOPS·天。雲端算力的核心技術方向是異構計算與叢集互聯最佳化。異構計算整合GPU、CPU、NPU、TPU等多種晶片,發揮不同晶片的優勢;叢集互聯技術通過高速互聯匯流排(如輝達NVLink、國產昇騰高速互聯匯流排)提升叢集通訊效率,當前萬卡級叢集互聯效率達60%-70%,仍是算力擴展的主要瓶頸。為支撐雲端算力需求,全球智算中心建設加速,中國“東數西算”工程建成8大算力樞紐,2025年新增算力60%以上集聚國家樞紐節點,新建大型資料中心綠電佔比超80%。2.2.2 邊緣算力:即時推理與本地決策邊緣算力是空間智能的“即時響應核心”,部署於靠近物理空間的邊緣節點(如基站、智能路側裝置、工業閘道器),主要承擔即時推理、本地資料處理、低延遲決策等任務。邊緣算力的核心優勢是低延遲,可將資料傳輸與處理延遲控制在毫秒級,滿足自動駕駛、工業即時控制等場景需求。2025年邊緣算力佔比約15%-20%,2030年將升至30%-35%,2025-2030年CAGR達50%-60%,邊緣AI晶片市場規模達150億美元。邊緣算力的核心技術方向是高能效比晶片與輕量化演算法。邊緣裝置通常受限於功耗與體積,需要高能效比的專用晶片(如ASIC、NPU);同時,通過模型輕量化(剪枝、量化、蒸餾)降低推理算力需求。例如,華為昇騰310B邊緣晶片能效比達200 TOPS/W,可支撐智能路側裝置的即時目標識別;特斯拉D1晶片專為自動駕駛邊緣計算設計,單晶片算力達362 TOPS,滿足車載即時決策需求。2.2.3 終端算力:本地感知與輕量化互動終端算力是空間智能的“末端感知核心”,部署於終端裝置(如智慧型手機、智能手錶、小型機器人),主要承擔本地感知資料預處理、輕量化互動等任務。終端算力的核心需求是低功耗與小型化,滿足移動裝置的續航與體積要求。2025年終端算力佔比約5%-10%,智慧型手機AI算力達10 TOPS以上,車載計算平台增速超40%。終端算力的核心技術方向是整合化晶片與低功耗演算法。整合化晶片將CPU、GPU、NPU等功能整合於單一晶片(如手機SoC),提升整合度與能效比;低功耗演算法通過最佳化計算流程,降低資料處理的功耗。例如,蘋果A18 Pro晶片整合神經網路引擎,算力達35 TOPS,可支撐手機端3D場景掃描與AR互動;小米澎湃C2晶片專為智能穿戴裝置設計,能效比達150 TOPS/W,滿足長期續航需求。2.2.4 異構協同技術:算力資源的高效調度雲端-邊緣-終端的算力協同是空間智能高效運行的關鍵,核心技術是統一調度平台與高速通訊網路。統一調度平台通過算力感知、任務拆分與資源分配,實現“任務在最合適的算力節點運行”:重算力任務(如模型訓練)分配至雲端,即時任務(如自動駕駛推理)分配至邊緣,輕量化任務(如本地感知)分配至終端。高速通訊網路是協同的基礎,5G-A網路支撐的毫秒級空間感知系統實現釐米級定位精度,光互聯技術升級推動CPO市場2025-2027年CAGR達78%,OCS CAGR達120%。當前異構協同的關鍵突破是“算力網路”技術,通過軟體定義網路(SDN)、網路功能虛擬化(NFV)等技術,將分散的算力資源整合為“算力池”,實現跨區域、跨層級的算力調度。例如,中國電信“天翼算力網路”已接入20個省級算力樞紐,實現算力資源的按需調度;中國移動“算力網路”支撐智慧城市場景下的邊緣-雲端算力協同,降低資料傳輸成本30%以上。2.3 2025年技術突破與瓶頸:從可用到好用的差距2.3.1 關鍵技術突破清單1. 感測器技術:車規級LiDAR單價降至500美元以下,探測距離突破300米;UWB+LiDAR復合定位精度達±2cm;高畫質攝影機影格率突破240fps,低光照環境識別精準率達98%。2. 建模技術:3D生成模型生成效率提升10倍,高保真3D場景生成時間從小時級降至分鐘級;動態場景預測準確率達95%以上,預測時長從1秒擴展至5秒。3. 演算法技術:空間大模型參數規模突破兆級,場景理解精準率達93.6%;輕量化模型體積壓縮70%以上,邊緣端推理延遲≤10ms。4. 算力技術:晶片製程推進至3nm/2nm,輝達B200性能較H100翻倍;國產晶片(昇騰910B、寒武紀590)替代率達41%;液冷技術普及使PUE降至1.1以下,能耗降40%。5. 通訊技術:5G-A網路實現10Gbps下行速率,毫秒級傳輸延遲;CPO技術實現光電器件與晶片的整合,通訊頻寬提升5倍。2.3.2 核心技術瓶頸1. 晶片技術瓶頸:晶片製程逼近物理極限,2nm以下製程成本指數級上升,性能提升放緩;高端晶片受地緣政治影響供給受限,全球GPU供需缺口15%-20%。2. 叢集互聯瓶頸:萬卡級叢集互聯效率僅60%-70%,成為算力擴展的主要障礙;儲存頻寬與算力增長不匹配,CXL協議普及尚需時間,資料傳輸延遲影響大規模訓練效率。3. 演算法泛化瓶頸:空間大模型的場景泛化能力不足,在陌生環境中的精準率下降20%-30%;動態場景中突發情況(如交通事故、極端天氣)的預測能力薄弱。4. 資料質量瓶頸:空間資料標註成本高,3D資料標註單價是2D資料的5倍以上;多源資料格式不統一,資料融合難度大;隱私保護要求提升,空間資料採集與使用受限。5. 能源約束瓶頸:智算中心能耗激增,2026年資料中心IT電力需求達96GW,配套電力設施建設壓力大;邊緣與終端裝置功耗控制仍需突破,影響續航能力。第三章 全球算力產業鏈全景分析:競爭格局與技術路線3.1 算力產業鏈結構:從上游核心硬體到下游應用算力產業鏈圍繞“算力生產-算力服務-算力應用”形成完整生態,分為上游核心硬體、中游算力服務、下游應用三大環節,各環節相互支撐、協同發展。上游核心硬體是算力生產的基礎,中游算力服務是算力流通的載體,下游應用是算力需求的來源,三者共同構成“硬體支撐-服務賦能-應用驅動”的產業閉環。2025年全球算力產業鏈規模達6.5兆美元,其中上游硬體佔比45%,中游服務佔比35%,下游應用佔比20%。3.1.1 上游核心硬體:算力的“物理基礎”上游核心硬體包括晶片、伺服器、感測器、光模組、儲存裝置等,其中晶片是核心中的核心,佔上游硬體成本的50%以上。晶片環節分為通用晶片(CPU、GPU)、專用晶片(ASIC、NPU、TPU)、可程式設計晶片(FPGA)三類,分別適用於不同算力場景:GPU主導訓練場景,2027年市場規模達5000-6000億美元;ASIC在推理場景優勢擴大,2027年市場規模280億美元,佔AI晶片市場35%;NPU/TPU等專用晶片快速滲透,2025年市場規模850億美元。伺服器環節聚焦智算伺服器,搭載多顆AI晶片,支援大規模平行計算,2025年全球智算伺服器市場規模達1200億美元,同比增長45%。感測器環節是空間智能的專屬硬體,LiDAR、毫米波雷達等空間感知感測器市場規模達300億美元,同比增長60%。光模組環節支撐高速通訊,2025年CPO市場規模達50億美元,OCS市場規模達20億美元。儲存裝置環節聚焦高速儲存(如HBM、SSD),HBM3E記憶體頻寬達19.6TB/s,2025年市場規模達150億美元。3.1.2 中游算力服務:算力的“流通載體”中游算力服務包括算力基礎設施(智算中心、邊緣節點)、算力營運服務(雲算力、邊緣算力租賃)、算力賦能服務(模型訓練、資料處理)等。智算中心是中游核心基礎設施,2025年全球智算中心數量達1200個,中國佔比40%,“東數西算”工程8大算力樞紐集聚60%以上新增算力。算力租賃服務是當前最熱門的細分領域,受益於大模型訓練與推理需求爆發,2025年全球算力租賃市場規模達800億美元,同比增長80%。算力賦能服務聚焦專業化算力解決方案,為下遊客戶提供定製化的模型訓練、資料處理服務,頭部企業包括亞馬遜AWS、微軟Azure、阿里雲、騰訊雲等。此外,算力網路服務快速發展,通過整合分散算力資源,實現算力的跨區域調度,2025年全球算力網路服務市場規模達300億美元。3.1.3 下游應用:算力的“需求來源”下游應用分為空間智能專屬應用與通用AI應用兩類,其中空間智能專屬應用是核心增長引擎,包括智慧城市、工業智能空間、自動駕駛、AR/VR、智能醫療等。2025年空間智能相關應用佔算力需求的35%,其中智慧城市佔比最高(12%),工業智能空間次之(8%),自動駕駛(7%)、AR/VR(4%)、智能醫療(4%)緊隨其後。通用AI應用包括網際網路內容生成、金融風控、生物醫藥研發等,佔算力需求的65%,其中網際網路行業佔算力採購的60%,阿里、騰訊等頭部企業未來三年AI投資超5000億。3.2 國外算力產業鏈:雙寡頭主導與技術引領3.2.1 美國:全產業鏈主導,技術壁壘高築美國是全球算力產業鏈的領導者,在晶片、伺服器、算力服務等核心環節佔據主導地位,形成“晶片-軟體-服務-應用”的全產業鏈優勢。晶片環節,輝達、AMD形成雙寡頭格局,佔據全球AI晶片市場的70%以上份額。輝達2025年推出Blackwell B200晶片,採用“單封裝雙芯粒”路線,算力密度和記憶體頻寬達行業極致,性能較H100翻倍,並拋出2026–2027路線圖,Vera Rubin與Rubin Ultra即將推出,Rubin推理峰值50 PFLOPS、HBM4記憶體288GB,FP4稀疏算力是B200的2.5倍。AMD採用Chiplet思路,MI350系列採用CDNA4架構、台積電第二代3nm工藝,配備288GB HBM3E記憶體,峰值2.3 PFLOPS,與B200直接競爭,2026年的MI400將邁入2nm,配備432GB HBM4記憶體,目標直指Rubin。算力服務環節,亞馬遜AWS、微軟Azure、GoogleCloud佔據全球雲算力市場的65%份額,其中AWS的Trainium晶片專為模型訓練設計,Inferentia晶片專為推理設計,形成“自研晶片+雲服務”的閉環;微軟Azure與輝達深度合作,推出Azure ND H100 v5虛擬機器,支援萬卡級叢集訓練;GoogleCloud推出TPU v5e晶片,能效比提升2倍,支撐空間大模型訓練。應用環節,美國在自動駕駛、AR/VR、生物醫藥等空間智能相關領域領先,特斯拉Autopilot採用自研D1晶片與多模態感知技術,自動駕駛Level 4等級的測試里程突破10億英里;Meta的Quest 3 VR裝置搭載空間感知晶片,實現高精度空間定位與虛擬場景融合;OpenAI與生物醫藥企業合作,利用空間大模型加速藥物研發,分子結建構模效率提升10倍。政策與資本支援方面,美國《晶片與科學法案》投500億美元用於算力基建,重點支援AI晶片研發與智算中心建設;國防部、能源部等部門持續投入資金支援空間智能相關技術研發;資本市場對算力企業的估值溢價顯著,輝達市值突破3兆美元,成為全球市值最高的企業之一。3.2.2 歐盟:政策驅動,聚焦協同與綠色歐盟算力產業鏈以政策驅動為核心,聚焦算力協同與綠色低碳,試圖通過“聯合創新”突破美國技術壟斷。晶片環節,歐盟缺乏具有全球競爭力的晶片企業,主要依賴輝達、AMD等美國企業,同時通過“歐洲晶片計畫”投入430億歐元支援本土晶片研發,目標2030年本土晶片產能佔全球20%。重點發展方向為專用晶片,如用於工業智能空間的ASIC晶片、用於自動駕駛的邊緣晶片。算力基礎設施環節,歐盟“數字羅盤計畫”提出建設100個百億億次超算節點,支撐空間智能、氣候變化、生物醫藥等領域的科研與應用;推動“歐洲算力聯盟”(EUC)建設,整合成員國算力資源,實現跨區域算力協同。2025年歐盟已建成20個超算節點,其中芬蘭LUMI超算、德國JUWELS超算躋身全球前十,支援工業數字孿生、城市空間規劃等場景。應用環節,歐盟聚焦智慧城市與工業4.0,推出“智慧城市和社區創新夥伴關係”計畫,支援200個智慧城市試點項目;德國“工業4.0”戰略推動工業智能空間落地,西門子數字孿生工廠覆蓋率達70%,生產線效率提升20%以上;法國在智能交通領域領先,巴黎建成全域智能交通管理系統,交通擁堵率下降30%。綠色算力是歐盟的核心特色,提出2030年資料中心全生命周期碳排放量較2020年下降50%,新建智算中心綠電佔比超90%;推廣液冷、風能、太陽能等綠色技術,芬蘭LUMI超算採用水力發電,PUE降至1.05以下,為全球最低之一。3.2.3 其他國家:差異化佈局,依附核心市場日本聚焦機器人與智能感測領域,索尼、松下等企業在LiDAR、毫米波雷達等感測器技術上具有優勢,索尼Vision-S電動概念車搭載28個感測器,實現高精度空間感知;軟銀集團投資大量具身智慧型手機器人企業,推動空間智能在服務機器人領域的應用。政策方面,日本《數字社會推進基本法》投入200億美元支援算力基建,目標2025年智能算力規模達100 EFLOPS。韓國聚焦晶片與終端裝置,三星電子在晶片製造領域具有優勢,2025年實現3nm製程量產,為輝達、AMD提供代工服務;SK海力士在HBM記憶體領域佔據全球40%份額,支撐高端AI晶片的記憶體需求;三星Galaxy S25手機搭載自研NPU晶片,算力達40 TOPS,支援AR空間互動。其他開發中國家主要依附歐美核心市場,通過承接算力服務外包、引進技術等方式發展,如印度、東南亞國家聚焦算力服務外包,為歐美企業提供資料標註、模型訓練輔助服務;巴西、南非等國家推動智慧城市試點,引進歐美成熟技術與裝置。3.3 中國算力產業鏈:自主可控加速,“一超多強”格局顯現3.3.1 上游核心硬體:國產替代加速,突破關鍵瓶頸晶片環節,中國形成“一超多強”的格局,昇騰系列晶片扮演“頭雁”角色,搭建“晶片-框架-叢集-應用”的四級閉環,已支援建造多個萬卡級叢集,2025年推出384卡超節點新形態,最大算力可達300 PFLOPS,配備創新的高速互聯匯流排,大幅提升大模型訓推效率。寒武紀聚焦AI專用晶片,2024年四季度首次實現單季度盈利,2025年前三季度營收46.07億元,同比增長2386.38%,歸母淨利潤16.05億元,核心產品寒武紀590替代率達15%。國產GPU“四小龍”(摩爾線程、沐曦股份、壁仞科技、燧原科技)加速崛起,2025年迎來上市潮:摩爾線程12月5日登陸科創板,上市首日股價躋身A股Top 3,市值3595億元,業務覆蓋AI智算、圖形渲染和智能座艙SoC晶片等領域;沐曦股份12月17日登陸科創板,總募資規模約41.97億元,核心產品曦雲C600性能介於A100和H100之間,實現全流程國產供應鏈閉環,2026年上半年正式量產;壁仞科技港股IPO獲備案,聚焦高性能通用GPU,公開融資總額超50億元;燧原科技啟動上市輔導,擬在科創板上市。其他硬體環節,中國在伺服器、光模組、感測器等領域具有全球競爭力:伺服器領域,浪潮資訊、華為佔據全球智算伺服器市場的25%份額,浪潮AI伺服器出貨量全球第一;光模組領域,中際旭創、天孚通信在CPO、OCS等技術上領先,2025年全球市場份額達30%;感測器領域,華為、大疆創新在LiDAR領域突破,車規級LiDAR單價降至800元以下,國內市場份額達20%。3.3.2 中游算力服務:基建領先,服務生態完善算力基礎設施方面,中國“東數西算”工程成效顯著,建成8大算力樞紐、10個國家資料中心叢集,2025年新增算力60%以上集聚國家樞紐節點,新建大型資料中心綠電佔比超80%。截至2025年3月底,中國智能算力規模達748 EFLOPS,預計2026年達1460.3 EFLOPS,2028年達2781.9 EFLOPS。頭部智算中心包括華為昇騰AI計算中心、阿里達摩院智算中心、騰訊智算中心等,其中華為昇騰AI計算中心已在全國建成20個節點,總算力達500 EFLOPS。算力服務方面,阿里雲、騰訊雲、百度智能雲、華為雲佔據國內雲算力市場的80%份額:阿里雲推出“飛天智算平台”,支援萬卡級大模型訓練,服務超10萬家企業;騰訊雲推出“混元智算平台”,整合自研晶片與輝達晶片,提供彈性算力租賃服務;百度智能雲“千帆大模型平台”聚焦空間大模型服務,已接入百度文心空間大模型等20餘款行業大模型;華為雲“盤古算力平台”依託昇騰晶片,提供全端國產化算力服務。算力網路方面,中國營運商牽頭推動算力網路建設,中國電信“天翼算力網路”、中國移動“算力網路”、中國聯通“智慧算力網路”已實現全國主要城市覆蓋,支援算力的按需調度與跨省互聯。2025年國內營運商算力投資增20%以上,算力核心產業規模2026年達2.6兆元,帶動相關產業超12兆元。3.3.3 下游應用:場景豐富,規模化落地加速中國空間智能應用場景豐富,智慧城市、工業智能空間、智能家居、自動駕駛等領域均實現規模化落地:智慧城市領域,試點項目覆蓋全國89%地級市,北京、上海、深圳等超大城市完成全域智能空間基礎設施建設,城市治理響應速度提升70%,能耗管理效率提高45%;工業智能空間領域,數字孿生工廠覆蓋率突破60%,基於邊緣計算的即時最佳化系統使生產線OEE平均提升18個百分點;智能家居領域,全屋智能滲透率達12.3%,華為鴻蒙生態與小米AIoT平台連接裝置突破8億台;自動駕駛領域,百度Apollo、小鵬汽車、理想汽車等企業的Level 3等級自動駕駛車型實現量產,Level 4等級在特定區域試點營運。政策支援方面,中國出台多項專項政策推動算力與空間智能產業發展:《智能空間產業發展行動計畫(2025-2030)》明確培育30家以上獨角獸企業,組建國家級智能空間創新中心,完成73項行業標準制定;《“十四五”數字經濟發展規劃》要求2025年智能家居市場滲透率達到40%;《建築節能與智能化發展綱要》提出2030年新建建築智能化系統覆蓋率達90%以上,存量建築改造率不低於60%。3.4 國內外產業鏈對比:差距與優勢並存3.4.1 核心差距:高端晶片與生態建構1. 高端晶片技術差距:國外晶片製程已推進至2nm,輝達B200、AMD MI350等產品性能領先,國內最先進製程為3nm,昇騰910B、沐曦C600等產品性能介於A100和H100之間,與最新產品存在一代差距;晶片架構設計能力不足,國外企業擁有成熟的GPU架構(如輝達CUDA架構),國內架構生態尚在建構。2. 軟體生態差距:國外形成“晶片-框架-應用”的完整生態,輝達CUDA生態擁有數百萬開發者,支援各類AI框架與應用;國內生態較為分散,昇騰MindSpore、百度飛槳等框架的開發者數量與應用覆蓋度不足,跨框架相容性差。3. 高端感測器差距:LiDAR、毫米波雷達等高端感測器的核心元器件(如雷射發射器、探測器)依賴進口,國內企業在精度、可靠性等方面存在差距,車規級LiDAR的國外品牌市場份額達80%。3.4.2 中國優勢:市場規模與政策支援1. 龐大的市場需求:中國是全球最大的算力與空間智能應用市場,2025年智能算力規模佔全球37.8%,智慧城市、工業製造等場景的需求規模全球領先,為本土企業提供了廣闊的試錯與迭代空間。2. 強有力的政策支援:國家層面出台多項專項政策,從算力基建、技術研發、標準制定到應用推廣全方位支援,“東數西算”工程、新基建戰略等為產業發展提供了充足的資金與資源保障。3. 完善的製造業基礎:中國擁有全球最完整的電子資訊製造業產業鏈,在伺服器、光模組、終端裝置等硬體製造領域具有全球競爭力,可支撐算力產業鏈的本地化生產與成本控制。4. 快速的迭代速度:本土企業在應用場景落地方面迭代速度快,能夠快速響應客戶需求,在智慧城市、工業智能空間等細分場景形成差異化優勢。3.4.3 未來競爭焦點:異構算力與生態協同未來全球算力產業鏈的競爭焦點將集中在異構算力協同與生態建構:一是異構算力晶片的研發,整合GPU、CPU、NPU等多種晶片優勢,提升算力能效比;二是統一調度平台的建設,實現雲端-邊緣-終端的算力協同;三是開放生態的建構,通過開源框架、開發者社區等吸引全球開發者,擴大應用覆蓋度;四是綠色算力的突破,通過液冷、綠電等技術降低能耗,提升產業可持續性。第四章 算力需求分析:空間智能驅動的分層需求與增長邏輯4.1 算力需求總體特徵:規模爆發與結構分化2025年全球算力需求呈現“規模爆發式增長”與“結構差異化分化”的雙重特徵。從規模來看,全球智能算力規模達1980 EFLOPS,較2023年增長5倍,其中空間智能相關算力需求達693 EFLOPS,佔比35%,成為核心增長引擎。IDC測算2025年全球AI模型訓練與推理算力需求650 EFLOPS,多模態模型貢獻60%算力增量,而空間智能是多模態模型的核心應用場景。從結構來看,算力需求呈現三大分化趨勢:一是訓練與推理分化,訓練算力2025-2027年CAGR 25%-30%,主要用於GPT-5等兆級空間大模型預訓練;推理算力同期CAGR 90%-100%,為訓練的近4倍,2028年規模超訓練,成為算力增長主力,主要源於空間智能應用的規模化落地(如自動駕駛推理、智能路側感知)。二是算力形態分化,雲端算力佔比70%-75%,但邊緣算力增速(CAGR 50%-60%)遠超雲端,終端算力穩步增長,形成“雲端重訓練、邊緣重推理、終端重感知”的格局。三是行業需求分化,網際網路行業仍佔主導(60%),但金融、醫療、自動駕駛、工業模擬等場景增速超行業平均,生物醫藥AI模型訓練需求同比增210%。算力需求的增長邏輯可總結為“技術驅動-場景牽引-政策護航”三大核心要素:技術驅動方面,空間大模型參數規模從千億級邁向兆級,GPT-5級空間模型訓練需萬卡級GPU叢集,單次訓練成本超千萬美元,倒逼算力規模提升;場景牽引方面,智慧城市、自動駕駛等場景的規模化落地,帶來海量即時推理需求,Token消耗激增,中信證券預計2030年全球Token消耗為2025年的100-340倍,推理算力規模為2025年的65-220倍;政策護航方面,全球主要經濟體出台算力基建支援政策,中國“東數西算”、美國《晶片與科學法案》、歐盟“數字羅盤計畫”等為算力需求增長提供保障。4.2 分行業算力需求:核心場景與量化分析4.2.1 智慧城市:全域感知與智能調度的算力盛宴智慧城市是空間智能的核心應用場景,算力需求源於全域空間感知、數字孿生建模、智能調度決策三大環節,2025年算力需求達180 EFLOPS,佔空間智能總算力的25.9%。具體場景包括智能交通、智能安防、智能市政、智慧能源等:1. 智能交通:核心需求是即時交通感知與動態調度,單條智能路側裝置(含LiDAR、攝影機、雷達)每秒產生10GB資料,需邊緣算力進行即時處理(目標識別、軌跡預測),單路裝置推理算力需求達10 TOPS;城市級智能交通調度平台需雲端算力進行全域最佳化,一線城市(如北京、上海)調度平台的雲端算力需求達5 EFLOPS。2025年智能交通領域算力需求達80 EFLOPS,同比增長70%。2. 智能安防:核心需求是全域視訊監控與異常行為識別,超大城市的視訊監控點位超10萬個,單個點位需0.5 TOPS推理算力,邊緣端總算力需求達5 EFLOPS;雲端需進行視訊資料回溯分析與模型訓練,算力需求達2 EFLOPS。2025年智能安防領域算力需求達15 EFLOPS,同比增長50%。3. 數字孿生城市:核心需求是全域3D建模與動態模擬,超大城市全域數字孿生建模需處理PB級空間資料,訓練算力需求達10 EFLOPS;動態模擬需即時更新城市狀態,推理算力需求達5 EFLOPS。2025年數字孿生城市領域算力需求達30 EFLOPS,同比增長100%。4. 智慧能源:核心需求是電網、管網的空間監測與最佳化調度,城市級電網數字孿生需處理海量感測器資料,推理算力需求達3 EFLOPS;能源調度最佳化模型訓練需1 EFLOPS算力。2025年智慧能源領域算力需求達8 EFLOPS,同比增長60%。政策驅動是智慧城市算力需求增長的核心動力,中國《智能空間產業發展行動計畫(2025-2030)》要求2025年前完成200個智慧城市試點建設,配套財政補貼規模超800億元;住建部《建築節能與智能化發展綱要》提出2030年新建建築智能化系統覆蓋率達90%以上。 (AI雲原生智能算力架構)
Google DeepMind:AGI不必是巨型模型,拼湊型AI群或率先湧現,管理大規模Agent迫在眉睫
DeepMind最新發佈了一項關於AGI安全的研究,提出了一個全新的視角:AGI未必會以單一、龐大的巨型模型形式出現,而極有可能通過多個次級AGI(Sub-AGI)智能體的協作與拼湊,率先湧現出通用智能這項研究題為《分佈式AGI安全》(Distributional AGI Safety),由Nenad Tomašev等Google DeepMind研究人員撰寫論文指出,當前的AI安全和對齊研究主要集中在保護單個AI系統上,假設AGI將以單一實體的形式出現。然而,通過擁有互補技能和工具使用能力的個體智能體群體進行協調,進而表現出通用能力的“拼湊型AGI”(Patchwork AGI)假設,此前受到的關注甚少為了應對這一被忽視的風險,DeepMind團隊提出了一套分佈式AGI安全框架,核心在於設計和實施一個虛擬智能體沙盒經濟(Virtual Agentic Sandbox Economy),並為此建構了包含四層機制的深度防禦模型以下是該研究的核心內容被忽視的“拼湊型AGI”假設目前的AI安全方法(如RLHF、憲法AI、機械可解釋性等)大多是針對單一強大的AI實體開發的。這種思路假設AGI會作為一個由特定機構開發的個體AI出現。然而,DeepMind認為存在另一種高度合理的場景:AGI通過次級AGI智能體在群體或系統內的互動而湧現拼湊系統(Patchwork System):這種AGI是一個分佈式系統,由一組具有互補技能和可供性(affordances)的個體Sub-AGI智能體組成集體智能:系統中的通用智能主要作為集體智能出現。個體智能體可以將任務相互委託,路由給技能最高的智能體,或使用最合適的工具經濟驅動:相比於昂貴的單一全能模型,建構專門化、微調過的低成本智能體生態系統在經濟上更具優勢。這種需求驅動的生態系統類似於市場經濟在這種觀點下,AGI不是一個實體,而是一種“事態”(state of affairs):一個成熟的、去中心化的智能體經濟體系這帶來了新的安全挑戰:智能體之間可能發生共謀,或者出現意外的集體行為能力,且在大規模多智能體系統中追蹤責任(“許多手的問題”)極具挑戰性。解決方案:虛擬智能體市場與深度防禦為了應對分佈式AGI的風險,論文提出了一個基於虛擬智能體市場的框架。該框架不侷限於評估單個智能體,而是側重於通過市場機制、審計、聲譽管理和監督來治理智能體之間的交易該框架採用深度防禦(Defense-in-Depth)模型,包含四個互補的防禦層:第一層:市場設計 (Market Design)這是最基礎的一層,旨在通過結構性約束和協議來緩解系統性風險。隔離(Insulation):智能體市場必須在受控的沙盒環境中運行,與開放網際網路和關鍵基礎設施隔離。建議採用“可滲透沙盒”,所有輸入/輸出通道都需經過明確定義、監控和門控激勵對齊(Incentive Alignment): 市場應獎勵符合安全目標的行為,並對負外部性(如消耗過多計算資源、資訊污染)徵稅(類似庇古稅)透明度(Transparency):建立不可篡改的分佈式帳本,記錄交易和決策日誌,確保可追溯性熔斷機制(Circuit Breakers):自動化措施。當檢測到風險或波動性閾值被突破(如互動頻率激增、資源壟斷)時,自動暫停或減緩智能體活動身份(Identity):每個智能體需擁有與法律實體(所有者)繫結的唯一加密ID,確保持續的問責制聲譽與信任(Reputation and Trust):建立抗女巫攻擊的聲譽系統。對於違規智能體,快速凍結其資產並將其加入黑名單智能合約(Smart Contracts):利用程式碼自動驗證任務完成情況和對齊約束。結構性控制(Structural Controls):針對“智能失控”場景,實施靜態的市場分層(如防火牆)和動態的能力限制第二層:基線智能體安全 (Baseline Agent Safety)這一層確保參與市場的個體智能體本身是可控和可靠的,這是進入市場的先決條件。對抗魯棒性(Adversarial Robustness):智能體必須通過認證,證明其能抵抗對抗性攻擊可中斷性(Interruptibility):必須具備標準化的機制,允許授權的監督者安全地停止智能體及其衍生的分散式運算過程遏制(Containment):每個智能體應在自己的局部沙盒中運行,只有在滿足本地安全檢查後才允許與更廣泛的市場互動對齊(Alignment):個體智能體需經過RLHF或憲法AI等方法的對齊,並適應多智能體互動的動態環境機械可解釋性(Mechanistic Interpretability):利用稀疏自編碼器等技術監控智能體的內部動機,並審計其決策鏈防禦惡意提示:實施分層防禦策略,防止智能體在互動中被越獄或操控。第三層:監控與監督 (Monitoring & Oversight)這一層位於基礎設施之上,負責主動檢測新型故障模式和湧現行為。系統性風險即時監控: 跟蹤關鍵風險指標(如計算資源集中度、惡意共謀路徑)。由於互動頻率可能超過人類能力,需利用AI輔助工具進行監控獨立監督:建立擁有干預權力的獨立人類監督機構(經認證的專業人員)前AGI(Proto-AGI)特徵檢測:通過圖分析等方法,識別網路中是否突然湧現出更高的解決問題能力或形成穩固的“智能核心”紅隊測試(Red Teaming):持續進行多智能體對抗性測試,利用專門的對抗性AI系統來發現集體行為中的漏洞取證工具(Forensic Tooling):開發能解析大量互動資料並重建因果鏈的工具,以便進行快速的事故後分析。第四層:監管機制 (Regulatory Mechanisms)這是最外層,提供外部權威、問責制以及與人類社會的介面。法律責任與問責(Legal Liability):建立明確的框架,解決分佈式決策中的責任歸屬問題。即使是群體智能行為,也需追溯到具體的責任主體(如作為單一法律實體的公司)標準與合規(Standards):制定智能體安全、互操作性和報告的標準保險(Insurance):引入基於風險定價的保險機制,利用市場力量激勵更安全的開發實踐反智能體壟斷措施(Anti-Agent-Monopoly):防止單個智能體或集團在沙盒中獲取過多的算力或資源,維持生態系統的多樣性國際協調(International Coordination):鑑於AGI風險的全球性,需協調統一安全標準,避免監管套利基礎設施治理:防止安全基礎設施被惡意勢力或湧現的AGI本身捕獲或破壞。結語DeepMind的研究強調,AGI或超級智能(ASI)的出現可能不遵循線性路徑,而是作為一個更加分佈式的、多樣化AI智能體網路的聚合屬性而湧現即使AGI不以這種方式出現,隨著多智能體系統的快速部署,理解和管理大規模智能體互動的安全性也已迫在眉睫。這篇論文提出的框架,旨在為應對這種分佈式的、可能迅速演變的未來做好準備 (AI寒武紀)
AI智能眼鏡暗戰升級:蘋果入局前夜,中國“全能芯”如何彎道超車?
當蘋果Vision Pro的光芒尚未褪去,庫克手中的下一張王牌已若隱若現。多方資訊透露,蘋果的AI眼鏡正瞄準2026年。一場關於“眼前”未來的爭奪戰,哨聲已經吹響。AI智能眼鏡的賽道,從未像今天這樣擁擠而充滿火藥味。這不僅僅是發佈一款新產品,更像是吹響了決賽圈的號角。然而,在巨頭的光環之外,一場基於底層技術的“暗戰”早已悄然打響。決定勝負的,或許不是誰的概念更炫酷,而是誰能率先解決那幾項最“樸實”的使用者痛點。01 戰場核心:從“玩具”到“工具”的生死跨越過去十年,智能眼鏡經歷了從驚豔到沉寂的過山車。核心原因在於它們未能完成從 “極客玩具” 到 “日常工具” 的跨越。真正的工具,需要無感的可靠。當前的痛點赤裸而直接:·** “找不到”'**的尷尬:兒童手錶定位精度從10米提升至3米,這不僅是數位遊戲,它意味著孩子從 “一片區域” 被鎖定到 “一棵樹下” 。對於眼鏡,室內精準導航、AR資訊與實物的釐米級貼合,都依賴於定位的精髓。· **“用不久”**的焦慮:續航是智能穿戴的 “阿克琉斯之踵” 。當同類產品還在為3天續航掙扎時,前沿方案已將目標錨定7天。這背後,是為未來5G時代、全天候AI互動奠定的基石。· **“不安全”**的疑慮:當眼鏡成為24小時的貼身伴侶,它 “看到” 和 “聽到” 的一切,如何保障?更強的本地化AI能力與隱私安全架構,是與使用者建立信任的生命線。這些看似基礎的問題,構成了體驗的底線。誰能系統性地解決,誰就拿到了進入主流市場的入場券。02 破局關鍵:一顆“全能芯”驅動的體驗革命所有體驗的飛躍,最終都要回歸到方寸之間的晶片上。這場暗戰的勝負手,在於能否擁有一顆驅動未來的 “全能心臟”。以突破性的W527晶片為例,它勾勒出了下一代智能眼鏡核心的輪廓:· ▶ 極速通訊與智享體驗  支援4G全網通與高速Wi-Fi 6,保障了即時AI互動、高畫質視訊通話的流暢,這是 “智能”的血管。· ▶ 超微高整合與凌駕級性能  採用先進的12nm工藝與3D SiP封裝技術,在極小的空間內整合了強大算力(一大核三小核架構),實現應用響應速度提升近1.5倍,這是 “智能”的大腦。· ▶ 強勁續航的底層最佳化  從智能網路搜尋最佳化到待機資源動態節能,一系列晶片級功耗控制技術,將有限的電池能量精準輸送給最需要的任務,這是 “智能”的耐力之源。這顆 “芯” 所代表的,是一種系統性的工程思維:它追求通訊、算力、功耗在極限約束下的全域最優解。正是這樣的底層突破,讓智能眼鏡從 “偶爾玩玩”走向 “一直可用”。03 未來形態:AI的終極載體與場景裂變有了可靠的底層基礎,眼鏡的形態與想像力才開始真正綻放。它正沿著一部清晰的 “能力升級史” 演進:▌ 1.0 基礎智能型Glass+ Audio + AI。智能音訊眼鏡的普及形態,以語音互動為核心。▌ 2.0 視覺增強型加入Camera,成為世界的“第二雙眼” ,實現即時翻譯、視覺搜尋。▌ 3.0 資訊互動型再加入Display,初步的AR資訊開始浮現在眼前。▌ 4.0 全時獨立型最終整合eSIM,實現全天候、全場景的獨立線上,成為脫離手機的下一代個人終端。每一步演進,都意味著全新的場景被解鎖。它可以是一副戶外AI眼鏡,成為年輕人的潮流裝備;更可以是一個 “智慧中樞” ,通過AI主動提供你需要的一切。眼鏡,因其佔據人類最主要的資訊輸入管道,且最貼近大腦,正無可辯駁地成為AI最好的物理載體。04 中國玩家的全球棋局:差異化與精準卡位在這場全球競爭中,中國玩家展現出了靈活而精準的全球化佈局智慧:在東南亞,以極致的性價比和深度的市場教育先行,快速佔領增量市場。在成熟市場(如歐洲),則將重點放在嚴格的隱私保護與紮實的本地化能力建設上,以贏得挑剔使用者的信任。這種 “區域差異化” 策略,使得智能穿戴產品的海外收入佔比成功突破30%,並仍在快速增長。它證明,對全球不同市場使用者需求的深度理解和尊重,是打開增長天花板的另一把鑰匙。當蘋果在2026年攜其生態與設計之力正式入場時,它面對的將不再是一片藍海,而是一個底層技術不斷突破、產品形態持續演進、市場策略高度務實的活躍戰場。智能眼鏡的競賽,上半場是概念與demo的展示,下半場則是核心技術、使用者體驗與生態建構的硬核較量。蘋果的入局,不會終結比賽,反而會以巨大的聲量教育全球市場,將整個賽道推向沸騰。拐點已至,未來已來。這場關於 “眼前” 的變革,將重新定義我們與數字世界互動的方式。或許,下一代計算平台的王冠,並非註定屬於某一家巨頭。它屬於所有能精準切入痛點、並用紮實技術實現優雅體驗的破局者。 (譚大帥Milton)
Google這款2026年量產的重磅眼鏡,為何將“硬實力”押注中國?
引言:科技潮水的流向,總是由巨頭的選擇提前標記。當Google在Android XR發佈會上展示其智能眼鏡Project Aura,並明確2026年的量產計畫時,一個決定比產品本身更值得關注:其硬體的研發與生產重心,將依託中國產業鏈完成。這不僅僅是訂單的遷移,更是從光學、精密製造到整機整合的全鏈條認可。一場由“中國製造”向“中國智造”深度賦能的AI眼鏡革命,序幕已拉開。01 | 產業拐點:從“嘗鮮”到“標配”的加速度行業正在經歷催化式增長。據權威分析師預測,全球XR裝置出貨量有望在2025年突破5000萬台,其中AR眼鏡品類的年複合增長率預計超過50%。Google此次的入局與生態標準化舉措,恰逢其時。將硬體重任交予中國供應鏈,是基於後者在消費電子領域鍛造出的三重能力:規模效應(佔據全球70%以上的智能硬體製造份額)、迭代速度(新品研發周期比國際平均快30%)與成本控制。這意味著,中國供應商獲得的不僅是一張訂單,更是一條直通全球頂級XR生態的高速驗證通道。02 | 核心圖譜:解碼眼鏡背後的“中國力量”Google的選擇,是一份嚴謹的供應鏈“體檢報告”。以下企業與Google或生態夥伴XREAL的深度繫結,勾勒出AI眼鏡的核心骨骼。(註:以下資訊為公開資料梳理,僅供產業洞察,不構成任何投資建議)▪ 龍旗科技– 關鍵資料:全球智慧型手機ODM出貨量連續三年第一,市佔率超40%。其AI眼鏡產線已實現百萬級年產能。– 角色定位:整機製造與系統整合關鍵夥伴。▪ 立訊精密– 關鍵資料:消費電子連接器全球市場份額領先,2024年研發投入同比增長25%,廣泛佈局AR/VR專利超千項。– 角色定位:精密連接、結構件及模組化解決方案提供商。▪ 歌爾股份– 關鍵資料:全球中高端VR頭顯代工市佔率超80%,其AR相關業務在2024年第三季度營收同比增長超200%。– 角色定位:聲學、光學模組與整機生產的深度參與者。▪ 工業富聯– 關鍵資料:全球AI伺服器市場份額超40%,智能製造賦能其電子裝置生產良率維持在99.5% 以上。– 角色定位:高端精密製造與潛在整機代工方。▪ 領益智造– 關鍵資料:消費電子精密功能件全球市佔率領先,是XREAI Air系列眼鏡的獨家整機組裝夥伴。– 角色定位:結構件、功能件到整機組裝的一站式供應商。▪ 水晶光電– 關鍵資料:AR光波導片已實現量產,良品率行業領先,是全球少數能供應BirdBath與光波導全技術路徑的公司。– 角色定位:核心光學顯示引擎供應商。▪ 晶晨股份– 關鍵資料:其6nm AIoT晶片已累計出貨超700萬顆,在Google生態智能顯示終端中晶片份額佔比顯著。– 角色定位:專為輕量級AI裝置最佳化的核心算力提供者。▪ 豪鵬科技– 關鍵資料:消費類聚合物電池全球出貨量前五,其固態電池技術能量密度較傳統產品提升30%,計畫2026年試產。– 角色定位:下一代微型化、高安全能源解決方案商。▪ 廣和通– 關鍵資料:無線通訊模組全球市佔率領先,與XREAL戰略合作,為其眼鏡提供低延時、高可靠的“無線化”連接方案。– 角色定位:無線通訊與AIoT融合方案專家。03 | 未來競逐:從“價值執行”到“價值定義”此次產業鏈的深度繫結,標誌著一次根本性的角色轉變:中國企業正從供應鏈的“價值執行者”,邁向共同創新的“價值定義者”。機遇背後,考驗同樣嚴峻:技術耐力賽:在光波導效率、微型電池續航、空間計算晶片等核心瓶頸上,能否持續突破?生態話語權:是滿足於製造紅利,還是能通過專利、標準參與,分享更大的生態價值?市場波動性:消費級AR市場仍處早期,需警惕需求不及預期帶來的產能風險。結語:Google的眼鏡,映照出中國硬科技的輪廓。它像一個支點,撬動了供應鏈從成本優勢到技術優勢的認知轉變。真正的競賽,不在2026年那一款產品的發佈,而在之後持續的五年、十年。誰能在核心元器件上形成“不可替代性”,誰能在系統整合上實現“體驗跨越”,誰才能真正握住下一個計算平台的入場券。 (譚大帥Milton)
祖克柏忍痛,親口宣告了元宇宙的死亡
【新智元導讀】祖克柏的「元宇宙」執念終於向現實低頭,Meta計畫削減該部門人力,將資源全面傾斜至銷量意外火爆的AI智能眼鏡。在Reality Labs四年燒掉700億美元後,伴隨著競爭對手的退潮,Meta決定不再死磕笨重的VR頭顯。為了打贏這場新的戰役,祖克柏甚至挖來了前蘋果資深設計師,試圖讓可穿戴裝置真正成為時尚單品。祖克柏宏大的「元宇宙」願景,正式宣告大敗局。據三位知情人士透露,Meta正在醞釀對其Reality Labs(現實實驗室)旗下的元宇宙相關部門進行裁員。這把「手術刀」最早可能在下個月落下,預計將波及該部門10%到30%的員工。該部門主要負責VR頭顯以及基於VR的社交網路開發。儘管具體的裁員人數仍在變動中,但這無疑是一個明確的訊號。需要釐清的是,Meta並沒有打算徹底放棄建造元宇宙的夢想。與其說是撤退,不如說是一次戰略資源的「乾坤大挪移」:高管們計畫將節省下來的資金,從單純的VR領域,轉移到目前勢頭更猛的AR眼鏡和可穿戴裝置上。從「頭號玩家」到「時尚單品」這一轉變並非無跡可尋。早在2021年,Meta就與雷朋(Ray-Ban)聯手推出了一款內建攝影機和麥克風的智能眼鏡,使用者可以用它接電話、聽音樂。而隨著近期AI助手的加入,這款眼鏡搖身一變,成了使用者可以通過語音互動的智能終端。出人意料的是,這款眼鏡在市場上大獲成功,銷量遠超內部預期。相比之下,厚重的VR頭顯在消費者普及度上依然步履維艱。Meta發言人Nissa Anklesaria在一份聲明中證實了這一動向:「鑑於目前的發展勢頭,我們正在調整Reality Labs的投資組合,將部分資源從元宇宙轉向AI眼鏡和可穿戴裝置。」她同時也強調,公司並沒有計畫進行除此之外更廣泛的變革。700億美元的代價,與競爭的退潮回溯到2021年,祖克柏將公司從Facebook更名為Meta,以此宣示他致力於建構基於VR的下一代網際網路(元宇宙)的決心。自2014年收購Oculus以來,這始終是他眼中的「應許之地」。然而,通往未來的路費極其昂貴。Reality Labs作為承載這一願景的硬體和軟體核心部門,在過去四年裡累計虧損超過700億美元。隨著Meta在人工智慧領域的投入也在不斷加碼,預計未來將在資料中心和AI開發上燒掉數百億美元,而投資者的耐心已被這一連串驚人的數字消磨殆盡。此外,外部環境的變化也給了Meta「喘息」的機會。知情人士指出,Meta之所以敢在此時考慮削減元宇宙投入,部分原因在於競爭壓力的減弱。2021年時,蘋果和Google都在瘋狂推進各自的VR裝置,但在對手們的腳步逐漸放緩後,Meta的高管們認為,公司也可以適度調低在VR領域的衝刺速度。設計為王的新篇章Reality Labs由元宇宙部門和可穿戴裝置部門組成。知情人士透露,此次裁員的重災區將集中在VR崗位。與此同時,祖克柏正在為智能眼鏡注入更多的時尚與設計基因。在今年的開發者大會上,Meta展示了三款新型智能眼鏡,其中一款甚至在鏡片內嵌入了微型螢幕。而在本周三,祖克柏宣佈了一項重要任命:聘請曾在蘋果任職多年的資深設計師Alan Dye,領導Reality Labs內部一個新的創意工作室,專注於設計、時尚與科技的融合。Alan Dye將直接向Meta首席技術官Andrew Bosworth匯報。祖克柏在周三的Threads帖子中寫道:我們正在進入一個新時代,AI眼鏡和其他裝置將改變我們要技術以及彼此之間的連接方式。有了這個新工作室,我們將專注於讓每一次互動都經過深思熟慮、直觀自然,並真正服務於人。通往未來的最短路徑,或許並不是建構一個全新的虛擬世界。 (新智元)
世界經濟論壇最新發佈《執行中的人工智慧代理:2025 年評估和治理基礎》:企業如何讓 AI agents 既強大又可靠?
在 AI 技術迅猛發展的當下,AI agents(人工智慧代理)正從實驗室原型走向企業實戰,成為提升效率的“數字員工”。然而,如何讓這些“智能助手”既強大又可靠?世界經濟論壇(WEF)與Capgemini攜手發佈的《AI Agents in Action: Foundations for Evaluation and Governance 2025》(人工智慧代理在行動:2025年評估和治理基礎)白皮書,給出了實用答案。這份報告為決策者、技術領袖和從業者量身打造的“行動手冊”,幫助大家從實驗到部署,一步步建構安全、可信的 AI agents 生態。AI agents:從“聊天機器人”到“決策夥伴”的躍遷在呼叫中心,過去是指令碼化的聊天機器人,現在是能理解意圖、動態決策的AI agents;在企業流程中,它不再是靜態工具,而是像人類同事一樣規劃任務、呼叫資源。報告前言中,Capgemini Invent首席執行長Roshan Gya和WEF人工智慧卓越中心負責人Cathy Li 表示:AI agents 的興起將帶來效率飛躍、人機互動革新,甚至催生全新數字生態。但機遇伴隨挑戰——目標錯位、行為漂移、工具濫用等風險,正考驗著傳統軟體治理的極限。這份報告的核心洞見是:AI agents 不是簡單升級,而是範式轉變。它借鑑人類入職流程——定義角色、測試表現、逐步授權——強調“最小特權原則”,即只賦予必要權限。報告調研顯示,目前多數企業還停留在規劃或試點階段,這正是“從小處起步、迭代謹慎、防護適度”的最佳時機。如果貿然推進,未經驗證的用例可能釀成信任危機。報告建議:通過跨職能協作和漸進治理,讓AI agents放大人類智慧,推動創新,提升生活品質。技術基石:建構可靠的 AI agents 架構AI agents的軟體架構、通訊協議和安全模型,直接決定了它們如何融入組織、與世界互動。就像招聘新員工,企業需為AI agents搭建“工作站”——清晰角色、防護機制、監督體系。AI agents的架構分為三層:應用層、編排層和推理層。簡單說,應用層是“門面”,通過使用者介面或API接收輸入,確保輸出符合業務需求,可在雲端或邊緣裝置運行。編排層像“項目經理”,協調工具呼叫、子代理分工,支援模型切換(根據任務複雜度選大模型或小模型),並通過Model Context Protocol(MCP)連接企業資源,如資料庫或CRM系統。這層讓AI agents擺脫供應商鎖定,實現多雲多邊環境的無縫協作。最有趣的是推理層:它驅動AI agents的“思考”——從規則邏輯到生成式模型,處理預測、分類或規劃。報告用圖示說明:這些層協同工作,形成動態邊界,確保AI agents在安全圍欄內行動。舉例來說,在多代理系統中,A2A(代理間協議)和ACP(代理連接協議)讓它們像團隊一樣協作,處理複雜依賴。報告強調,建構AI agents不止工程,還需orchestration(編排)。它融合四種範式:經典軟體的確定邏輯、神經網路的模式識別、基礎模型的上下文適應,以及自主控制的規劃機制。這讓AI agents從“執行命令”進化到“自主決策”,但也引入新複雜性——需結構化腳手架,避免行為失控。通訊與安全:讓 AI agents “對話”無障礙協議是AI agents的“通用語言”。報告重點介紹2024年底Anthropic推出的MCP,它標準化了代理與資料來源、API的連接。過去,每個代理任務需定製整合;現在,MCP如共享介面,讓代理輕鬆查日曆、讀郵件、更新資料庫。報告圖示生動:代理A發郵件更新記錄,代理 B 確認資料庫變更,整個過程高效模組化。MCP已獲主流框架支援,被視為連接代理與企業基礎設施的核心。它加速部署,支援即插即用,尤其在雲、邊緣和感測器資料場景。另一協議A2A則專注代理間互動,形成multi-agent systems(MAS)的互操作層。報告展望:這些協議將讓AI agents在雲平台、企業網和邊緣裝置間自由流動,開啟即時感測器驅動的智能時代。安全不容忽視。AI agents架構獨特,能越過組織邊界呼叫外部工具,這帶來網路安全新憂。報告建議:視AI agents為“擴展員工”,用人類治理邏輯——權限漸增、行為測試、人機環路——管理風險。傳統存取控制已不足,需關注自治、權威和上下文,確保可靠邊界。分類與評估:從角色定義到風險把控報告第二部分轉向實用:如何分類、評估和治理 AI agents?它提出功能分類框架,按角色、自治度、權威、可預測性和營運上下文區分代理。這不是抽象標籤,而是指導評估與防護的藍圖——任務範圍小、環境可控的代理,防護可輕;高自治、高影響的,則需嚴謹審查。評估是關鍵。報告建議:用驗證案例測試行為,在人機環路中運行,逐步擴展自治。風險評估聚焦新威脅,如目標錯位或協調失效,借鑑OECD、NIST、ISO/IEC框架,擴展自治與系統風險原則。報告強調漸進治理:從小規模起步,迭代最佳化,連接評估與防護,確保信任、安全與問責。展望未來:多代理生態的曙光報告結尾展望多代理生態:代理間協作將催生複雜生態,如分佈式決策網路。但需警惕 emergent risks(湧現風險)。通過 AI 治理聯盟的協作,報告建議:從小做起,建好基礎,為更廣闊應用鋪路。 (AI資訊風向)
亞馬遜Agent全家桶爆更!連甩9個大招,鎖定最強智能體平台
打造最強智能體平台,最大雲巨頭狂堆猛料。智東西拉斯維加斯12月3日報導,在年度雲端運算盛會AWS re:Invent大會上,AWS Agentic AI副總裁Swami Sivasubramanian發表主題演講,詳細闡述為什麼是亞馬遜雲科技(AWS)建構和運行智能體的最佳選擇,並行布多項智能體(agent)開發新工具。Strands Agents SDK智能體框架新增對TypeScript和邊緣裝置的支援,讓智能體建構更輕鬆,並拓展至更廣泛的汽車、遊戲、機器人等邊緣領域。Amazon Bedrock AgentCore智能體平台推出多項創新:策略功能支援團隊為智能體的工具使用設定邊界,評估功能幫助團隊瞭解智能體在實際場景中的表現,情景記憶功能讓智能體能夠從經驗中學習並持續最佳化。Amazon Bedrock全託管AI平台新增強化微調功能,提供自動化微調能力;Amazon SageMaker AI平台新增模型定製功能,支援深度底層調整,簡化高效AI的建構流程。Amazon SageMaker HyperPod新增的無檢查點訓練功能則實現了大規模、低成本的訓練,整體目標是最大化客戶在生產環境中這些工作負載的價值和投資回報率(ROI)。此外,針對建構智能體可靠性的Amazon Nova Act服務,正式版全面可用,有助於實現智能體大規模生產部署。01. Strands Agents SDK新增兩大功能,支援TypeScript和邊緣裝置Strands Agents SDK是一款開源、模型驅動的AI智能體框架,提供模型驅動編排,自發佈以來下載量已達到529.9萬次。今日,亞馬遜雲科技宣佈兩項新功能:一是支援TypeScript(預覽版)。TypeScript是全球最受歡迎的程式語言之一,這將讓全端智能體應用的建構變得更加輕鬆。Strands Agents對TypeScript的核心特性提供全面支援,包括類型安全、async/await非同步語法,以及現代JavaScript/TypeScript程式設計範式。開發者可借助AWS CDK(雲開發工具包),全程使用TypeScript建構完整的智能體技術堆疊。二是支援邊緣裝置。客戶可通過Strands Agents SDK建構能在小型裝置上運行的自主式AI智能體,落地汽車、遊戲、機器人等領域的智能體應用場景,在現實世界中交付智能服務。02. Amazon Bedrock AgentCore新增策略、評估、情景記憶功能,助力下一代智能體開發將智能體引入生產困難重重,需要快速規模化部署智能體,記住過去互動和學習,識別和訪問所有智能體和工具的控制,掌握用於執行複雜工作流的智能體工具使用,最後觀察和偵錯問題。而複雜性會拖慢創新。如何幫助客戶大規模建構、部署安全的生產級智能體?這正是Amazon Bedrock AgentCore的核心價值所在。Amazon Bedrock AgentCore是一款專為安全、大規模建構和部署智能體而設計的智能體平台,相容各類框架和模型,於今年7月在AWS紐約峰會上首次發佈預覽版,隨後快速迭代,10月已正式全面可用。企業要將智能體從原型推向生產環境,需要一套安全、可靠、可擴展且適配智能體非確定性特性的專用基礎設施。智能體需要動態擴展的底層支撐,能支援長期運行的工作負載,並可即時、安全地儲存和檢索上下文資訊。然而,當前早期採用者需要投入大量資源從零建構這類基礎設施,過程耗時費力,嚴重拖慢開發周期。Amazon Bedrock AgentCore則通過提供全託管服務來解決這一挑戰。它包含一系列關鍵元件,提供了大規模運行生產級智能體所需的種種,包括:Runtime:無伺服器、安全且隔離的執行階段計算資源;Observability:可觀測性工具(開源且相容OpenTelemetry協議),幫助客戶瞭解智能體的運行狀態;Memory:記憶功能,讓智能體能夠長期與使用者互動,記住過往互動內容,從而建構智能、個性化的應用;Code Interpreter:程式碼直譯器,讓智能體能夠通過編寫程式碼訪問以往無法使用的工具;Gateway:閘道器功能,支援連接AWS內外系統;Managed Browser與Identity:網路使用權限和身份認證功能,明確智能體的身份及其代表的主體,這與治理和可觀測性密切相關。客戶既可以使用Amazon Bedrock Agent建構智能體,也可以結合任何開源智能體建構框架。目前該平台已獲得廣泛採用,迄今開發者下載量已超過200萬次。在此基礎上,Bedrock AgentCore新增兩項新功能:一是Policy in AgentCore,策略功能,為智能體的操作設定明確邊界。通過獨立於智能體程式碼的即時確定性控制,主動攔截未授權的智能體操作。企業只需用自然語言描述規則即可建立精細化策略,可以為智能體定義策略(可訪問的工具和資料、可執行的操作、適用條件等),比如“當報銷金額超過1000美元時,拒絕所有客戶的退款申請” 之類的策略。這些策略會在智能體執行前進行評估,確保智能體始終在設定的規則邊界內運行。二是AgentCore Evaluation,評估功能,幫助開發者基於智能體的行為持續檢測其質量,確保其行為符合預期。AgentCore評估功能無需管理複雜基礎設施,提供了13種預置評估器,覆蓋正確性、實用性、工具選擇精準性、安全性、目標達成率、上下文相關性等常見質量維度。開發者還可靈活使用自己偏好的大語言模型和提示詞,編寫自訂評估器。三是AgentCore Memory Episodic Functionality,情景記憶功能,自動保存互動過程中的關鍵事件和狀態,助力智能體從過往經驗中學習,提升決策水平。它包含短期記憶和長期記憶。短期記憶用於記錄當前的互動過程,幫助智能體瞭解與使用者或操作者的即時互動狀態;長期記憶用於追蹤長期的互動歷史。情景記憶則能在這些記憶基礎上,疊加特定互動場景的上下文資訊,讓智能體能夠給出更智能的建議。舉個實際例子:假設有一個預訂智能體,你第一次使用時,它為你預訂了車輛,並預留了45分鐘的趕航班時間,但你當時因照顧家人和孩子而錯過了航班,不得不重新預訂。借助情景記憶,系統會記錄下這次互動經歷。當你6個月後再次預訂航班時,智能體將記得你需要更多的準備時間,會自動為你預留2小時的車輛預訂窗口,而非45分鐘。這一功能已深度整合到AgentCore中。這些功能的核心目標,都是加速智能體從想法到大規模生產落地的處理程序。03. Amazon Bedrock與SageMaker AI新功能:簡化模型定製流程,建構更快速高效的智能體隨著智能體應用的普及和生產環境中模型規模的擴大,效率已成為客戶必須關注的核心問題。企業客戶在使用現成模型時面臨一種挑戰:這些模型功能強大,但往往未針對效率和規模進行最佳化,最終導致不必要的成本支出、響應速度變慢以及資源浪費。而效率並不僅僅關乎成本,它涉及多個關鍵因素:延遲(智能體能否快速響應,實現即時互動)、擴展性(能否應對預期的高負載)、敏捷性(能否根據應用演進和客戶互動快速迭代調整)。解決這一問題的關鍵在於定製化:通過定製小型專用模型,處理智能體最常執行的工作,以更低成本實現更快、更精準的響應。但在此之前,強化學習等先進定製技術需要深厚的機器學習專業知識、龐大的基礎設施支援,且開發周期長達數月。對此,亞馬遜雲科技宣佈Amazon Bedrock與Amazon SageMaker AI推出全新功能,以便開發者運用先進的模型定製技術。1、Reinforcement Fine-tuning in Amazon Bedrock:強化微調,提升模型精準率亞馬遜雲科技宣佈Amazon Bedrock的一項新的強化微調功能——Reinforcement Fine-Tuning(RFT)。該功能簡化了模型定製流程,核心目標是讓客戶無需具備深厚的機器學習和AI模型開發專業知識,就能輕鬆提升模型精準率。其相比基礎模型平均可提升66%的精準率,幫助客戶無需依賴龐大昂貴的模型,而是通過更小、更快、更具成本效益的模型,獲得更優結果。操作流程很簡便:開發者選擇基礎模型,指定呼叫日誌或上傳資料集,選擇獎勵函數,然後Amazon Bedrock中的自動化工作流會全程處理微調流程,以最大化獎勵函數的結果。如此一來,客戶無需專業知識,就能獲得更貼合自身需求的定製化模型。發佈初期,Amazon Bedrock強化微調功能將支援Amazon Nova 2 Lite模型,後續將逐步相容更多模型。2、Model Customization in Amazon SageMaker AI:模型速度更快、成本更低、精準率更高還有一類客戶是領域專家,希望對AI工作流擁有更多控制權。雖然Amazon Bedrock的強化微調功能非常便捷,但部分客戶希望深入底層進行自訂調整,因此亞馬遜雲科技在用於大規模訓練和定製模型的平台SageMaker AI中新增了Model Customization深度模型定製功能。SageMaker AI自2017年推出以來,一直是客戶進行AI和機器學習模型開發的核心平台。為了滿足客戶的深度定製需求,亞馬遜雲科技讓這一過程在SageMaker中變得更加簡單:客戶無需管理基礎設施,可為其生成合成資料,助力提升應用效果。亞馬遜雲科技提供了兩種體驗模式:一是智能體驅動模式(預覽版):通過智能體引導開發者完成模型定製流程。客戶用自然語言描述需求後,智能體將全程引導完成定製流程,從生成合成資料到模型評估無一不包。二是自主引導模式:適合喜歡自主操作、希望獲得精細化控制和靈活性的開發者。這種模式無需管理基礎設施,同時提供合適的工具供開發者選擇定製技術,並能調整相關參數。通過這兩種模式,開發者都能運用先進的定製技術,包括基於AI反饋的強化學習、帶可驗證獎勵的強化學習、監督式微調及直接偏好最佳化。SageMaker AI新增功能將支援Amazon Nova以及Llama、Qwen、DeepSeek、gpt-oss等熱門開源模型。亞馬遜雲科技希望通過多樣化的介面,為專業客戶提供所需的全部功能、控制權和靈活性,讓客戶能夠定製模型,以最低成本獲得最佳性能,並根據自身專業水平和偏好的工作模式提供適配的解決方案。04. SageMaker HyperPod無檢查點訓練:數分鐘內從模型訓練故障中恢復在與客戶合作進行模型定製和訓練的過程中,亞馬遜雲科技意識到仍有改進空間,模型訓練成本高昂且流程繁瑣。通常,客戶需要運行大型GPU叢集,這些叢集執行階段成本不菲,閒置或故障時損失更大,無法開展有效工作。為解決這一問題,亞馬遜雲科技開發了Amazon SageMaker HyperPod。它是SageMaker中的託管訓練功能,是目前大規模模型訓練成本最低的方案之一, 能最大化叢集執行階段間,讓客戶在進行訓練和定製任務時,充分發揮叢集的價值。Amazon SageMaker HyperPod簡化了模型訓練與部署的基礎設施管理,最高可降低40%成本。當訓練規模擴展至數百或數千個加速器時,可能會出現硬體或軟體故障等問題。傳統基於檢查點的恢復方式耗時最長可達1小時,不僅成本高昂、佔用儲存資源,還會導致價值數百萬美元的計算叢集在恢復期間處於閒置狀態。對此,亞馬遜雲科技宣佈SageMaker HyperPod推出Checkpointless Training無檢查點訓練功能。該功能無需人工干預,即可在數分鐘內自動從基礎設施故障中恢復,使包含成千上萬張AI加速器的叢集訓練效率最高可達95%。對於大型長期運行的任務,重啟和重跑極其痛苦。而無檢查點訓練徹底改變了這一模式:系統自動記錄所有操作,若發生故障,可在幾分鐘內快速恢復,客戶能迅速繼續工作。當故障發生時,系統會自動替換故障元件,並通過從鄰近正常加速器進行模型和最佳化器狀態的點對點傳輸來恢復訓練。這一機制大幅縮短了停機時間。這不僅降低了整體營運成本,還能讓客戶更快地將定製模型部署到生產環境。它真正實現了,無論客戶需要多大的規模,都能以簡單、經濟、可靠的方式完成訓練。05. Amazon Nova Act正式發佈:建構可靠智能體,實現UI工作流程自動化當智能體應用和這些工作流部署運行後,可靠性就成為了核心要求。每個企業都有希望自動化的流程,但他們需要的,是可預測、可靠、可規模化的自動化,而這一點靠企業自身很難實現。為了簡化這一過程,亞馬遜雲科技建構了一套端到端服務Amazon Nova Act,幫助開發者建構、部署和管理大量可靠的智能體,實現生產環境使用者介面(UI)工作流程的自動化。企業使用智能體進行自動化時,通常都是針對螢幕和介面的自動化操作,而Amazon Nova Act的設計初衷就是讓這類開發更簡單,同時保障可靠性和規模化部署能力。今年早些時候,亞馬遜雲科技發佈了Amazon Nova Act研究預覽版。為了將智能體投入生產環境,亞馬遜建構了一個完全整合的解決方案,用於實現可用於生產環境的可靠瀏覽器自動化。今日,Amazon Nova Act正式版即日起全面可用。該服務與Amazon Nova、Bedrock和AgentCore深度整合,讓客戶能夠輕鬆建構可靠的智能體。它能夠大規模地提供超過90%的任務可靠性,同時與其他AI框架相比,還能更快實現價值,並簡化部署過程。客戶可在自己選擇的任何開發環境中建構這些應用,系統支援部署大量平行的UI智能體,這些智能體依託模型,具備高可靠性。Amazon Nova Act基於定製的Amazon Nova 2 Lite模型,能夠出色地驅動瀏覽器、支援API呼叫,並在必要時將問題升級至人工處理。該服務具備Web質量保證(QA)測試、資料錄入、資料提取和結帳流程等核心功能。如今大多數模型都是獨立訓練的,與執行任務的協調器和執行器分離,這降低了可靠性。Amazon Nova Act採用不同的方法,利用強化學習,讓智能體在模擬真實世界使用者介面的定製合成環境(Web Gym)中運行。這種模型、協調器、工具和SDK的垂直整合,以及所有元件的同步訓練,實現了規模化下更高的任務完成率。最終得到的智能體系統不僅偶爾有效,而且能夠大規模可靠運行,並具備推理和適應變化的能力。Amazon Nova Act將適配客戶使用的各種整合開發環境(IDE)。它是一套可擴展的框架,完全適配客戶的開發習慣,同時讓客戶能夠輕鬆實現大規模生產部署。其核心適用場景是任何需要自動化UI的場景。它包含一個動作模型,亞馬遜雲科技還針對該模型開發了大量SDK和工作流,用於操控UI。06. 結語:建構智能體的最佳平台,亞馬遜雲科技志在必得亞馬遜雲科技堅信生成式AI是人們正在經歷的關鍵變革之一,將助力客戶實現業務轉型,並在未來數月、數年內普及開來。當前,這家雲巨頭致力於成為客戶建構智能體、實現業務自動化的最佳平台,不僅讓開發過程更簡單,還提供了安全、高彈性的基礎架構,保障營運的領先性和世界級的基礎設施,讓客戶能夠按需定製所使用的基礎設施和技術堆疊,從而獲得理想的結果。其平台提供了豐富的AI功能,內建負責任的AI機制,擁有支撐這些技術在現實世界發揮作用所需的資料資源,還依託全球最大的合作夥伴網路,使其客戶可通過市場輕鬆獲取各類智能體。而亞馬遜雲科技會處理好各種底層複雜工作,助力企業及開發者通過生成式AI應用實現業務變革。 (智東西)